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Abstract: Wind energy is an important renewable energy source, and artificial intelligence
(AI) plays an important role in improving its efficiency, reliability and cost-effectiveness
while minimizing its environmental impact. Based on an analysis of the latest scientific
literature, this article examines AI applications for the entire life cycle of wind turbines,
including planning, operation and decommissioning. A key focus is on AI-driven main-
tenance, which reduces downtime, improves reliability and extends the lifetime of the
turbines. AI also optimizes the design of wind turbines, particularly in the development
of aerodynamically efficient blade shapes through rapid design iterations. In addition,
AI helps to reduce the impact on the environment, e.g., by reducing bird collisions, and
improves wind energy forecasting, which is essential for balancing energy flows in power
systems. Despite its benefits, AI applications face challenges, including algorithmic errors,
data accuracy, ethical concerns and cybersecurity risks. Further testing and validation of
AI algorithms is needed to ensure their effectiveness in advancing wind energy systems.

Keywords: artificial intelligence; wind turbine; AI-driven maintenance; turbine design;
turbine efficiency

1. Introduction
The issue of climate change and the security of electricity supply from conventional

fueled power stations have led to renewable energy sources being prioritized. In this
context, we observe that the installed capacity of wind turbines around the world is
constantly increasing. According to the World Wind Energy Association (WWEA) Annual
Report 2023 [1], the global installed capacity of wind turbines at the end of 2023 was around
1047 GW and the annual electricity production from wind turbines was around 2310 TWh
(Figure 1).

However, it is important to realize that electricity generation from wind turbines is
highly variable throughout the day and month in certain areas, as the wind is stochastic in
nature. Equally important is the fact that the demand for electricity also varies throughout
the day and month. The situation is similar for solar PV power plants, which, together with
wind power plants, make up the largest share of renewable energy capacity (excluding
hydropower plants). Although electricity generation from PV solar power plants and
wind power plants will only account for 15% of total electricity generation worldwide in
2024, the planned share in 2028 is 25% [2]. Most of the remaining production comes from
hydroelectric power plants, nuclear power plants and fossil fuel power plants. In 2023,
renewable energy sources were the largest source of electricity in the EU. Their share was
44.7%, while the share of electricity from fossil thermal power plants was around 32% and
that from nuclear power plants around 23%.
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Renewable energy sources are a strategic choice, but in December and January, when
solar energy and thus electricity generation from PV power plants is at its lowest and
electricity consumption is high due to the cold, significant problems can arise. On the
German mainland there is often winter fog without wind, and on the wind farms in the
North Sea there is often a strong wind, so that the wind farms have to be put into standby
mode. In such situations, the individual countries have to increase the import of energy
from the European energy market. The European electricity market is physically highly
interconnected and institutionally coordinated, but the laws of supply and demand lead to
price instability. This is a minor problem for households, which generally have a long-term
agreed price, but a serious problem for industry, which pays for electricity at the current
market price.

The European electricity grid is also of the utmost importance to the European Com-
mission: it is the only way to reduce Europe’s dependence on energy imports and achieve
the European Green Deal’s goal of achieving a 55% reduction in greenhouse gas emissions
by 2030 relative to 1990 levels. All of this will become even more important with the
increasing number of electric cars that are supplied with electricity from the grid.

It should also be pointed out that the conventional electricity grid is not designed
to cope with the integration of renewable energy sources. The variable nature of renew-
ables results in variable and unstable loads on the grid, which makes maintaining grid
performance within specified power, voltage and frequency tolerances a challenge. As
mentioned earlier, in some relatively short periods there is a surplus of energy in the grid
and in others there is a shortage. Therefore, the need for efficient management of energy
flows in the electricity grid is becoming increasingly clear [3]. On the one hand, the lack of
energy production from wind turbines and PV solar power plants should be compensated
by increased production from other sources or by utilizing energy from energy storage sys-
tems, and excess energy in the grid should be efficiently stored in energy storage systems.
However, the shutdown or reduction of electricity generation from conventional power
plants cannot be achieved immediately or in a short time due to the nature of the energy
conversion process in the power plant. It is therefore very important to predict the energy
production of wind farms as well as possible on an hourly and daily basis. This production
forecast now heavily depends on the advanced application of artificial intelligence (AI) to
accurately predict wind speed and power [4,5].

AI refers to the ability of computer applications to mimic human intelligence when
performing complex tasks and to act autonomously by analyzing data from the environ-
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ment to achieve specific goals. Digital technological developments have the potential to
significantly improve energy supply and energy trading (stabilize prices). In the foreseeable
future, the integration of supply, demand and renewable energy sources into the electricity
grid will be controlled by intelligent software that optimizes decision-making in connection
with system operation. Artificial intelligence will play a key role in achieving this goal [6].

The problem at issue here is at the level of the energy system. However, if we move to
the level of a wind farm or a single wind turbine, then we are faced with the problem of
optimizing the operation of a single wind turbine and maximizing production for given
wind characteristics (speed, power, direction, turbulence), but also ensuring the reliability
and highest possible availability of the wind turbine. In other words, maintaining existing
power plants [7] and minimizing the environmental impact of wind turbines (reducing
collisions with birds and bats [8]) are of great importance, and the application of artificial
intelligence in this area is becoming increasingly important.

If we analyze the topic of wind farms further, we come to the design phase, in which
the individual components of the wind farm are determined. Each of the components
should be optimized so that the wind farm produces the highest possible performance for
a given site given the input data, but also has the lowest possible investment costs and
the lowest possible impact on the environment. The optimal design of rotor blade profiles
through rapid iterations of profile variants is enabled by the application of AI, together with
the application of other tools related to computer simulations of rotor blade aerodynamics.

AI can also play an important role in the end-of-life phase of wind turbines by planning
the optimal decommissioning process, recycling and material recovery. AI can assess the
condition of ageing turbines and predict their remaining lifespan, helping to decide whether
they should be refurbished, upgraded or decommissioned.

The extent of AI applications in wind energy has been analyzed by Barbosa et al. [9],
Lee and He [10] and Wang et al. [11], who examined patents related to wind turbine technol-
ogy, patents related to AI and patents covering both wind turbines and artificial intelligence.
Wang et al. found that the number of patents in both areas increased significantly from
2010 to 2021, but that the overlap is quite small, meaning that there is still much room for
progress in this area. Secondly, the patterns of interaction of AI and wind power technology
knowledge show a shift from machine learning models (wind power technology on the
production side) to deep learning models (wind power technology on the production, trans-
mission and distribution side) to hybrid AI models (generation, transmission, distribution
and energy consumption in the whole process of wind power technology).

Many studies have analyzed trends and opportunities for AI applications in wind
energy forecasting, wind energy control, wind farm design, maintenance and optimization.
For example, Lipu et al. [12] summarized recent advances in hybrid AI methods for
wind energy forecasting based on the literature. Farrar et al. [13] gave a comprehensive
overview of AI and machine learning (ML) methods for wind turbine control. Wang
et al. [14] analyzed artificial intelligence algorithms in wind farm control and optimizations
applications. Chatterjee and Dethlefs [15] investigated trends in the application of artificial
intelligence in the operation and maintenance (O&M) of wind farms and analyzed future
development directions. An overview of the latest research trends in the fields of wind
energy and artificial energy and the identification of potential applications of artificial
intelligence and machine learning in the wind energy sector has also been provided by
Dörterler et al. [16].

A comprehensive analysis of the available literature shows that the application of AI
in wind turbines is a very popular research topic [17]. The above studies show that AI
technology is becoming a key factor and an important tool to increase the competitiveness of
wind power technology [6]. This fact has led some universities to analyze the possibilities of
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applying AI to improve wind turbine technology through project-based learning (PBL) [18],
with a focus on electricity generation at lower wind speeds.

AI technologies can help the energy industry capitalize on the growing opportunities
presented by the introduction of the internet of things (IoT) and the integration of renewable
energy sources [19].

With the significant increase in the use of AI and IoT in the energy industry and the
monitoring of smart grid infrastructure, cyberattacks are also increasing, but the solutions
to prevent these attacks are also growing rapidly [20].

The aim of this paper is to present a comprehensive analysis of the opportunities and
challenges associated with the application of artificial intelligence in wind energy systems.
The paper can serve as a valuable basis for young scientists to find a research niche and
make a significant contribution to progress in this field. Likewise, the paper can serve as a
source of information for investors and policy makers on the latest developments related to
the application of AI in wind energy.

2. Materials and Methods
This study analyzes the application of artificial intelligence in wind turbines based

on the available scientific literature. The research covers two main phases related to wind
farms: the design phase of the wind farm and the operational phase of the wind farm.
Subsequently, the end-of-life phase of wind farms was also briefly commented on. Finally,
the AI algorithms that deliver the best results in the considered problem areas of wind
turbines and the dangers of using AI are analyzed.

The research process involved the formulation of key questions for each content unit,
which were addressed systematically. To achieve this, relevant keywords were identified
and used for a comprehensive search of several document databases. The first phase of
the search focused on well-known scientific databases, including Web of Science, PubMed,
Scopus and Wiley Online Library, to name a few. In addition, relevant data and findings
were extracted from peer-reviewed articles published by leading academic publishers such
as Elsevier, IEEE and Taylor & Francis, as well as MDPI publications, proceedings of inter-
national conferences and specialized literature. In addition, supplementary information
was extracted from reports from authoritative organizations such as the International Re-
newable Energy Agency (IRENA), the National Renewable Energy Laboratory (NREL) and
various associations promoting the adoption of wind energy technologies. The Litmaps
service was utilized to conduct two additional analyses. In the first analysis, the horizontal
axis represented the publication year of the papers, while the vertical axis indicated the
frequency of citations in other papers. Figure 2 highlighted which papers had a greater
influence on the scientific community, prompting us to focus more on these papers during
the analysis.

Figure 3 illustrates the relationship between the publication year of the paper (horizon-
tal axis) and the number of references cited (vertical axis). The graph effectively highlights
authors who conducted extensive literature reviews, with review articles generally ex-
hibiting the highest number of references. In contrast, original scientific papers generally
contained fewer references.



Appl. Sci. 2025, 15, 2443 5 of 32Appl. Sci. 2025, 15, x FOR PEER REVIEW 5 of 33 
 

 

Figure 2. Temporal Citation Frequency: Identifying Highly Influenced Papers. 

Figure 3 illustrates the relationship between the publication year of the paper (hori-
zontal axis) and the number of references cited (vertical axis). The graph effectively high-
lights authors who conducted extensive literature reviews, with review articles generally 
exhibiting the highest number of references. In contrast, original scientific papers gener-
ally contained fewer references. 

 

Figure 3. Reference density Over Time. Differentiating Review vs. Original Articles. 

3. Results 
Artificial intelligence is mainly used in the wind turbine design phase and in the 

wind turbine operation phase, while it is less used in the end-of-life phase. In the follow-
ing, the overview is divided into four categories, with a third category relating to mainte-
nance and a fourth relating to the end of life of wind turbines. The last category contains 
suggestions for topics that will become increasingly important. 

  

Figure 2. Temporal Citation Frequency: Identifying Highly Influenced Papers.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 5 of 33 
 

 

Figure 2. Temporal Citation Frequency: Identifying Highly Influenced Papers. 

Figure 3 illustrates the relationship between the publication year of the paper (hori-
zontal axis) and the number of references cited (vertical axis). The graph effectively high-
lights authors who conducted extensive literature reviews, with review articles generally 
exhibiting the highest number of references. In contrast, original scientific papers gener-
ally contained fewer references. 

 

Figure 3. Reference density Over Time. Differentiating Review vs. Original Articles. 

3. Results 
Artificial intelligence is mainly used in the wind turbine design phase and in the 

wind turbine operation phase, while it is less used in the end-of-life phase. In the follow-
ing, the overview is divided into four categories, with a third category relating to mainte-
nance and a fourth relating to the end of life of wind turbines. The last category contains 
suggestions for topics that will become increasingly important. 

  

Figure 3. Reference density Over Time. Differentiating Review vs. Original Articles.

3. Results
Artificial intelligence is mainly used in the wind turbine design phase and in the wind

turbine operation phase, while it is less used in the end-of-life phase. In the following, the
overview is divided into four categories, with a third category relating to maintenance and
a fourth relating to the end of life of wind turbines. The last category contains suggestions
for topics that will become increasingly important.

3.1. Application of Artificial Intelligence in the Design of Wind Turbines

Artificial intelligence (AI) is increasingly being used in the design of wind turbines,
bringing innovation and improvements to various aspects of the process, resulting in more
efficient and adaptable energy systems. Some key applications and examples of the use of
AI in this area are outlined below.
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3.1.1. Design Process

The potential for using artificial intelligence (AI) to optimize the design of wind
turbines is enormous. AI can improve various aspects of the design process, leading to
more efficient and cost-effective wind turbines. The area of wind turbine design with
the greatest potential for AI is the aerodynamic design of the rotor blades, as it directly
influences the efficiency and energy output of a wind turbine. Using AI techniques and
computational fluid dynamics (CFD), the shapes of the turbine blades can be optimized to
minimize drag and turbulence while maximizing the energy yield of the turbine. AI can
capture complex non-linear aerodynamic effects that may be overlooked in conventional
design approaches, enabling more accurate modelling of the wind flow around the turbine
blades. This is important for improving the efficiency of wind turbines under a wide range
of environmental conditions, as it helps designers to select the best configurations for
specific sites. Sahibzada et al. [21] report in their study that AI-optimized blades have a 15%
better lift-to-drag ratio compared with conventional designs, based on CFD simulations.
This leads to a 12% increase in performance in normal wind conditions.

To test these results, a wind farm in a windy area was selected. Over a period of
6 months, the turbines with optimized blades generated 18% more power than those with
conventional blades. According to [22,23], the efficiency increase based on simulations
is as high as 10–15%. AI can speed up the design process by enabling rapid simulations
and evaluations of multiple design configurations. For example, advanced AI models
can create new designs with improved aerodynamic properties in a fraction of the time
compared with traditional methods. Zhang and Janeway [24] used CFD and ANN to
optimize the aerodynamic design of a blade. To this end, they analyzed a large number
of blade design variants (40,750 2D profiles). Among the optimal designs, a maximum
performance increase of about 8% was found. The use of the ANN model required a
relatively small number (163) of CFD analyses, resulting in a total calculation time of about
30 h. Without the use of the ANN model, 733 CFD evaluations would be required, resulting
in an optimization time of approximately 135 h using the same computer resources.

The integration of artificial intelligence into existing engineering tools improves the
overall design process and enables more comprehensive optimization, taking into account
factors as diverse as structural integrity, cost and environmental impact. In the structural
optimization of wind turbines, AI can help in the development of strong and lightweight
structures. This can reduce material and labor costs and improve the durability of turbines,
making wind energy more competitive with other forms of energy. Deep learning models
can predict the dynamic responses of floating wind turbine platforms, ensuring stability
in the deep sea. For example, LSTM networks predict the tension of mooring lines under
different wave loads [25].

In the generative planning of wind turbines, the designers first determine the most
important design parameters, e.g., turbine output, materials, installation location, wind
speed, noise, production costs and environmental impact. Then algorithms, often based on
machine learning and evolutionary algorithms, are used to generate a variety of variants of
the potentially optimal design. All structural parts of a wind turbine can be optimized, e.g.,
the rotor blades, the wind turbine tower, the wind turbine foundation, the transmission
elements, the electrical generator and others. The most common aim of optimization is to
increase the efficiency of the wind turbine (rotor blades, generator) or to reduce the amount
of material used (tower, foundation) in order to keep material costs as low as possible, but
also to facilitate transport and installation.

When optimizing the blade profiles, AI algorithms take into account the given pa-
rameters and try to minimize drag and turbulence, increase the lift coefficient [26] and
maximize the output energy for different environmental conditions. Each design created is
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then tested using computational fluid dynamics (CFD) simulations to evaluate its perfor-
mance in real-world conditions. The simulations may include aerodynamics, structural
analysis, noise calculations and other relevant factors. Based on the simulation results, the
algorithms create new, improved designs. This process is repeated several times, iteratively
improving the geometry of the wings and other structural elements until the optimal
solution is achieved.

Research shows that AI-powered design can lead to next-generation turbines with
improved wind energy utilization, which is key to advancing sustainable energy solu-
tions [22].

For example, a wind turbine called the Birmingham Blade, which was developed by
the British company EvoPhase+ in collaboration with KwikFab (Birmingham, UK), was
designed with the help of artificial intelligence. The wind turbine is said to be able to
generate seven times more energy in urban conditions than conventional models (not
experimentally verified). This design was specifically developed to capture the lower wind
speeds typical of urban environments (approx. 3.6 m/s) and to cope with the turbulence
caused by the surrounding buildings [27].

The National Renewable Energy Laboratory (NREL), as part of the INTEGRATE
project, is developing the next generation of aerodynamic tools for creating 2D airfoils and
3D designs of wind turbine blades using a specialized invertible neural network (INN)
architecture that learns the complex relationships between blade airfoil shapes and their
associated aerodynamic and structural properties [28].

Genetic algorithms (GAs) and particle swarm optimization (PSO) have been found to
be particularly effective in dealing with large search spaces in the design of aerodynamic
blades where multiple interdependent variables (e.g., blade chord length, twist distribution,
blade shape) need to be optimized simultaneously [22,23]. Genetic algorithms are based on
a population-based approach that performs random selection and recombination of design
candidates, enabling a robust global search that prevents premature convergence to local
optima [29]. These algorithms allow engineers to incorporate different objective functions—
such as maximizing the lift-to-drag ratio while minimizing material consumption—and can
thus propose a range of near-optimal designs for different wind conditions. However, the
computational cost of GAs can quickly skyrocket when very large populations or extensive
generations are required. In the context of rotor blade aerodynamics, the computational
cost increases when high-resolution computational fluid dynamics (CFD) simulations need
to be integrated into each iteration of the optimization loop [21].

Particle swarm optimization, on the other hand, uses a swarm of solution candidates
that exchange velocity and position information with each other, which leads to accelerated
convergence in many aerodynamic optimization scenarios [21,22]. PSO heuristics have
been shown to be particularly valuable for wind turbine blade design when fewer design
parameters (e.g., limited sets of cross-sectional profiles or simplified chord-twist param-
eterizations) need to be tuned. Comparative studies have shown that PSO can converge
faster than GAs in certain aerodynamic contexts, although it may have a tendency to be
trapped in local optima if swarm diversity is not well maintained [29]. In blade design,
the fast convergence of PSO can be advantageous when a large number of iterative CFD
evaluations are computationally intensive. However, the relative risk of partial conver-
gence may require adjustments such as time-varying inertia coefficients or hybridized
swarm intelligence.

Neural networks (NNs), including deep neural networks and convolutional neural
networks (CNNs), offer another advantage in aerodynamic optimization: they can learn
high-dimensional mapping functions that approximate fluid dynamic responses (e.g.,
lift, drag, and pressure distributions) for multiple blade geometries [30]. When trained
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with either numerical simulation data or empirical wind tunnel data, these models can
perform rapid assessments of aerodynamic performance without the need to repeatedly
invoke full-order CFD solvers. Therefore, NNs reduce the computational burden by acting
as surrogates or meta-models. Once a neural network surrogate is created, gradient-
based or gradient-free optimizers can be used on these learned representations to identify
optimal blade shapes [27,30]. This approach accelerates the design cycle, especially when
a large parameter space (e.g., multi-point aerodynamic conditions, different Reynolds
numbers, or advanced composite materials) must be considered. However, NNs require
carefully curated and sufficiently large training data sets. If the training data are sparse
or not representative of the entire aerodynamic domain, extrapolation errors and model
inaccuracies may occur.

In practice, a combined or hybrid approach is often chosen. Researchers have inte-
grated neural networks as surrogate models in genetic algorithms or PSO systems to reduce
the computational burden of aerodynamic blade calculations [22,30]. Such hybridizations
exploit the global search capabilities of evolutionary algorithms together with the high-
speed evaluations of machine-learned surrogate models. Studies have shown that, when
the neural network models accurately capture the aerodynamic nonlinearity and the GA
or PSO components preserve the robustness of the search, the overall design time can be
significantly reduced—sometimes by more than 40%—with negligible trade-offs in the
quality of the blade geometries found [22,27,30].

In summary, genetic algorithms are well suited for comprehensive global exploration
but can be computationally expensive, particle swarm optimization offers faster conver-
gence at the risk of being locally stagnant, and neural networks enable fast aerodynamic
evaluations that depend on the amount and accuracy of available training data. The optimal
choice of these methods depends on the complexity of the blade’s parameter space, the
underlying aerodynamic modelling fidelity, and the computational resources required to
achieve a highly accurate blade design. Jayabalan et al. [31] argue that the optimal design
of a wind turbine is influenced by various factors, such as blade profile, number of blades,
power factor and tip speed ratio (TSR). They investigated different AI techniques, such as
support vector machine (SVM), relevance vector machine (RVM) and genetic programming
(GP), for the optimal design of wind turbines and came to the conclusion that the TSR is
crucial for the design of wind turbines.

In addition to the rotor blades, the tower also plays an important role in wind turbines.
The base diameter, the upper diameter and the tube wall thickness of tubular steel towers
are design parameters that strongly influence two contradictory optimization objectives:
mass and top deflection. In addition, the solutions must fulfil the requirements of natural
frequency, stress and buckling. In their work, Cheng et al. [32] use convolutional neural
network (CNN), back propagation neural network (BPNN) and support vector machine
(SVM) algorithms to optimize the tower. They found that the CNN algorithm proved to
be the best. De Anda et al. [33] presented a method to determine the optimal design of
steel towers for wind turbines using artificial neural networks (ANNs) and the MOPSO
algorithm. The optimization approach aimed to achieve three design goals: maximizing
structural reliability, minimizing structural mass and maximizing wind energy utilization.

Artificial intelligence can help to design a cost-effective and structurally stable foun-
dation for wind turbines. Although there is not yet much scientific research on this topic,
two examples can be cited. Vougioukas et al. [34] applied an innovative approach using
AI to analyze design loads and optimize foundation systems for overturning resistance
while complying with Eurocode guidelines. This approach can significantly reduce the
amount of concrete and steel required and thus reduce construction costs by up to 70%.
Shen [35] developed a meta-model based on machine learning to optimize foundations
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for wind turbines in his master’s thesis. Two multi-output machine learning algorithms,
namely the multi-output random forest (RF) algorithm and the multi-output feedforward
neural network (FFNN) algorithm, were selected and optimized using the proposed genetic
algorithms (GA) method to determine the best model configuration and the best combi-
nation of input features. The author concluded that the multi-output RF model has better
performance in terms of accuracy and computational time compared with other developed
models. This approach replaces conventional finite element analysis (FEA) with machine
learning models that predict optimal designs more effectively, reduce computational time
and maintain the accuracy of structural performance estimates.

3.1.2. Performance Optimization for Local Wind Conditions

The ability of AI to analyze historical wind data and local weather conditions makes it
possible to adapt the design of turbines. Traditional “one-size-fits-all” solutions often lead
to sub-optimal results in different environments. AI models can identify optimal design
parameters such as blade shape, rotor diameter and spacing that are tailored to the specific
wind conditions to maximize energy production.

The Windstar project, for example, used AI to customize the shape of turbine blades
based on local wind patterns. The results of the project suggest that this could capture up
to 18% more wind energy compared with conventional designs, although this has not been
scientifically proven.

EvoPhase utilized AI to develop a turbine that can operate efficiently in Birmingham’s
unique wind conditions. The AI-generated design included innovative features such as
curved blades that rotate around a central point to optimize performance in the turbu-
lent urban airflows. The ability to create and test over 2000 designs in just a few weeks
significantly accelerated the development process compared with traditional methods [36].

3.1.3. Location Selection and Environmental Impact Assessment

Artificial intelligence (AI) is becoming increasingly significant in the selection of
sites for wind turbines and the assessment of their environmental impact. Traditional
methods are often time consuming and require a significant amount of manual work,
while AI enables faster, more efficient and more precise analysis of large amounts of data.
Geographic information systems (GIS) play a crucial role in mapping the suitability of
wind turbines, as they facilitate the analysis and visualization of different spatial data
layers that influence the potential for wind farm development. GIS is often combined with
multi-criteria decision analysis (MCDA) techniques such as the analytic hierarchy process
(AHP) to evaluate and prioritize sites based on different criteria. This approach allows
stakeholders to weight factors according to their importance, resulting in a comprehensive
suitability map that highlights optimal locations for wind energy projects.

In general, the application of AI in site selection includes the following:

• Analysis of meteorological data: UI algorithms can analyze huge amounts of meteoro-
logical data (wind speed and direction, temperature, humidity, etc.) collected from
weather stations, satellites and other sources. This makes it possible to accurately
predict the wind potential at different locations and identify optimal areas for the
installation of wind turbines. AI can recognize patterns and trends in data that are not
immediately visible to the human eye, leading to better estimates of a site’s energy
potential. For example, in their study, Bimenyimana et al. [37] used a geographic infor-
mation system (GIS) and the multi-criteria AHP to conduct a spatial analysis of the
suitability of sites for wind turbines in East African countries. The authors gathered
and analyzed data from various freely available sources, including the Regional Centre
for Mapping of Resources for Development (RCMRD), the African Geoportal, the
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Global Wind Atlas, energydata.info and the East African Community website. In his
research, Karakan [38] uses wind speed data from meteorological stations to predict
the available wind energy at a given location. The analysis employed advanced deep
learning techniques, including long short-term memory (LSTM), convolutional neural
networks (CNNs), recurrent neural networks (RNNs), gated recurrent units (GRUs), as
well as hybrid models such as LSTM-GRU, CNN-LSTM, CNN-GRU and CNN-RNN.
Among these, the CNN-GRU model demonstrated superior performance, achieving
a peak accuracy of 99.81% in wind energy prediction. The author used two different
models and five different measurement systems to evaluate performance and reports
that a high accuracy of 89% was achieved. As a result of this study, weekly, monthly,
and annual predictions were made.

• Analyzing topographical data: AI is used to analyze topographic maps and digital
terrain models to assess the suitability of the terrain for wind turbines. Algorithms
can identify areas with favorable characteristics, such as open areas with minimal
wind obstacles, and can avoid areas with excessive slopes or other topographical
constraints. An example is the study by Ifkirne et al. [39]. The study used a method
combining GIS with multi-criteria decision analysis (MCDA) to identify suitable sites
for onshore wind farms in southern France. In addition to the environmental factors
mentioned above, the study also considered technical and social factors in the site
selection process.

• Integration of geographical information (GIS): UI can be integrated with GIS systems
to combine different data layers, e.g., meteorological data, topographical data, infras-
tructure data (roads, power lines), protected areas, settlements and other relevant
factors. This enables a comprehensive analysis of the area and the identification of
optimal locations, taking all relevant aspects into account. It should be noted, however,
that the existence of legal restrictions related to land use, environmental protection and
community opposition can complicate site selection. An example of such an analysis
was given by Benti et al. [40]. In their study, GIS and the analytic hierarchy process
(AHP) are used to identify suitable sites for wind farms in Ethiopia. A similar analysis
for Sudan was conducted by Zalhaf et al. [41], who used a fuzzy AHP approach in
addition to GIS.

• Turbine layout optimization: Once a potential site is selected, UI can be used to
optimize the layout and spacing of wind turbines within that area. The algorithms
take into account the interaction between the turbines (the so-called “wake effect”) to
maximize energy production and reduce losses, as found in the research of Sa-maei
and Ghahfarokhi [42] and Song et al. [22]. In this case, the ANN-based wake models
speed up the design simulations by 40% compared with the traditional CFD methods.
According to studies by Harrison-Atlas et al. [43], optimizing the plant layout can
reduce the area required by an average of 18% per plant.

The application of AI in environmental impact assessment includes the analysis of
the following:

• Impact on wildlife: AI is being used to analyze data on bird and bat migrations and the
habitats of other animals to assess the potential impact of wind turbines on wildlife.
Algorithms can predict risk areas and help plan mitigation measures to minimize
negative impacts, such as switching off turbines at certain times or installing visual
and acoustic deterrents. In their paper, Duerr et al. [44] present the development
of an AI-powered bird detection system. This system integrates radar and camera
technology to track the movements of birds with the aim of minimizing collisions
with turbine blades. Using machine learning algorithms, the system can identify bird
species and predict their flight paths, enabling proactive measures to avoid collisions.
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• Noise from wind turbines: AI is used to model and predict the noise levels generated
by wind turbines. This allows the impact of noise on neighboring settlements to be
estimated and, if necessary, noise reduction measures to be planned. For example, Lai
et al. [45] discuss in their study how AI can classify different types of wind turbine
noise based on factors such as amplitude modulation and sound characteristics. The
study emphasizes the potential of AI to improve noise assessment methods and
provide insights into how different noise profiles affect wildlife and humans.

• Impact on soil and water: AI models can predict the long-term impact of wind turbines
on soil and vegetation by simulating different scenarios. These models take into ac-
count factors such as turbine location, wind conditions and environmental conditions
to predict potential changes in the environment and suggest mitigation strategies [23].

3.2. Application of Artificial Intelligence in the Operation of Wind Turbines

As electricity generation from wind energy is intermittent, the increasing integration
of wind turbines into existing electricity grids poses a challenge for the flexibility, security
and stability of electricity systems. Predicting power generation is becoming increasingly
important in this context, and artificial intelligence is recognized as an essential component
in the operational phase of wind farms. In addition, the integration of AI technologies
into the management processes of wind farms leads to improved efficiency, and AI in this
context includes the following:

• Improved accuracy of electricity generation and consumption forecasting
• Dynamic optimization of wind turbine performance
• Efficient remote monitoring and control of wind turbines
• Efficient bird collision avoidance system with wind turbine blades
• Integration of wind turbines with smart grids
• Improved predictive maintenance capabilities of wind turbines

3.2.1. Improved Accuracy of Forecasting Electricity Production and Consumption

It can be said that wind energy forecasting, although important, is not considered a
key area for the greatest contribution of AI in wind farms for several reasons:

• Wind energy production is highly variable and is influenced by numerous unpre-
dictable factors such as wind speed, wind direction, temperature and air pressure.
This inherent instability makes accurate forecasting difficult and often leads to signifi-
cant fluctuations between predicted and actual energy production.

• The complexity and randomness of these variables can limit the effectiveness of AI
models in producing reliable forecasts [46].

• Significant progress has already been made in the field of wind energy forecasting
using traditional meteorological methods and numerical weather prediction models.
Many operators are effectively utilizing these proven techniques, which may reduce
the current need for AI-driven solutions compared with other areas, such as predictive
maintenance, where AI can provide more transformative benefits.

• As wind energy is increasingly integrated into power grids, generation and demand
need to be balanced. While accurate forecasting is critical to this, it is primarily a tool
rather than a transformative application of AI. The focus is often on optimizing grid
management rather than improving the fundamental operational capabilities of the
wind farms themselves.

However, analyzing and monitoring turbine performance in real time using AI has
significant advantages. In response to changing wind conditions, AI algorithms can dynam-
ically adjust turbine settings, such as blade pitch and nacelle rotation angles, to maximize
energy production. As a result, energy production increases and overall efficiency is



Appl. Sci. 2025, 15, 2443 12 of 32

higher. According to some studies, AI can improve the efficiency of wind turbines by up to
20% [47].

Below are some of the most important research and applied AI methods related
to wind power generation forecasting. AI algorithms are excellent at analyzing huge
data sets, including historical weather patterns, turbine performance metrics and real-
time environmental conditions. By processing this information, AI can produce highly
accurate power generation forecasts based on expected wind conditions [46]. This allows
operators to optimize energy use and manage grid stability more efficiently, reducing the
risk of power outages or inefficiencies due to imbalances between supply and demand.
Precise short-term wind energy forecasting plays a critical role in mitigating the challenges
associated with voltage peaks and frequency regulation within the power grid, as well
as the connection of wind farms to the electricity grid. Some research work has been
carried out in this context. For example, Talwariya et al. [48] propose a conventional
neural network algorithm based on machine learning to forecast production and calculate
power production forecast errors. They used real data from a 40 kW wind farm at a site in
Rajasthan. In their study, Baseer et al. [49] introduce a novel hybrid model that strategically
integrates multiple complementary machine learning techniques to enhance the precision
of wind turbine energy production forecasting. The ensemble learning (EL) approach
demonstrates superior performance compared with long short-term memory (LSTM), light
gradient boosting machine (LightGBM), and sequenced-gated recurrent unit (Sequenced-
GRU) in predicting wind energy. The proposed model achieves an exceptional R² value of
0.9821, underscoring its high level of accuracy.

In their study, Ilhan et al. [50] propose several artificial intelligence techniques to sim-
ulate the rotation speed of the turbines and predict the wind energy production 10 min in
advance. Four tools are used for the prediction: The fuzzy C-means (FCM) approach of the
adaptive neuro-fuzzy inference system (ANFIS), the long-term memory (LSTM), the grid-
partitioning (GP) method of the adaptive neuro-fuzzy inference system and the subtractive
clustering (SC) algorithm of the adaptive neuro-fuzzy inference system. These methods
use historical data as input for the physical parameters to be estimated and estimate the
subsequent value as output. It has been shown that LSTM performs best when capturing
real, observed wind turbine parameters, while the ANFIS-FCM model provides the most
accurate results for wind energy. Ateş [51] has introduced an artificial neural network
(ANN)-based methodology for short-term wind energy prediction, utilizing a swarm intel-
ligence algorithm for optimization. The study includes a simulation of a real-world wind
power system in Turkey under varying wind speeds, conducted using MATLAB/Simulink.
The swarm intelligence algorithm is employed to fine-tune the parameters of the forecasting
model. The proposed algorithm’s effectiveness is assessed using actual data from a wind
farm in Turkey. Three distinct approaches are applied for efficient data processing: ANN,
ANN integrated with the firefly algorithm (ANN-FA), and ANN combined with particle
swarm optimization (ANN-PSO). The findings demonstrate that the swarm intelligence
algorithm surpasses conventional prediction methods, including statistical approaches and
standard machine learning techniques, in terms of both accuracy and reliability.

Desai et al. [52] used artificial intelligence to attempt to predict electricity generation
from wind energy one day in advance. The project was implemented on two SCADA data
sets that provided different parameters. The first dataset provided information on wind
speed, wind direction, theoretical power and active power. The output variable was energy
production (KWh). The second data set provided data on power output over time. The
article proposes and compares different machine learning methods and neural networks for
predicting energy from wind energy. Five common machine learning regressor algorithms
and long-term short-term models were compared, focusing on the target-output variable,
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and an approach for forecasting weather series in a scenario with insufficient weather
parameters for wind data was proposed.

In their research, Talaat et al. [53] created data-driven models for wind speed and
power prediction by employing machine learning (ML) and deep learning (DL) techniques,
incorporating site-specific climatological data. Additionally, they designed an advanced
recommendation system to optimize turbine placement and identify ideal locations for
power plants based on wind strength and speed. The study highlights the real-time effec-
tiveness of the proposed method, with XGBoost and random forest regressors achieving
94% accuracy and an average percentage error of 6 in forecasting 15-day power output.

A similar study to predict wind energy production was conducted by Bilgili and
Gül [54]. They developed a model using the decision tree, random forest, K-nearest
neighbor (KNN) and XGBoost algorithms. The dataset was sourced from real-time SCADA
data obtained from wind turbines, allowing for a comprehensive analysis. The results
of this study confirm the effectiveness of machine learning methods, especially XGBoost,
in accurately predicting wind power generation and at the same time emphasize the
importance of computational efficiency in practical implementation.

Li et al. [55] investigated the ways to estimate regional wind energy production
and proposed a multi-aggregate model of wind energy characteristics based on three
scaled Gumbel distribution functions for regional aggregated wind energy. The relative
peak power and full load hours were compared for the proposed model and the actual
measurements of the local distribution system operator using artificial intelligence models
using neural networks such as long short-term memory (LSTM), compound LSTM and
CNN-LSTM. The results show that the proposed compound LSTM is stable and reliable in
predicting the regional performance.

3.2.2. Dynamic Optimization of Turbine Performance

AI facilitates real-time adjustment of turbine settings, such as blade pitch and yaw
angle, in response to changing wind conditions. As mentioned earlier, this dynamic
optimization can increase energy yield by up to 20% by ensuring that turbines operate at
their highest efficiency under changing environmental conditions [47].

Maximum power point tracking (MPPT) is an essential step in the operation of wind
turbines to ensure efficient power generation. Muñoz-Palomeque et al. [56] have given
an overview of the existing techniques, explaining their benefits and providing a basis for
future developments. Two intelligent control strategies are presented in more detail: neural
networks and fuzzy logic controllers.

Artificial intelligence (AI) plays an important role in stabilizing the output voltage
of a wind turbine in the grid, especially when a doubly fed induction generator (DFIG)
is used. However, the dynamic characteristics of such generators depend on non-linear
parameters such as stator flux, stator current and rotor current, which increases the overall
complexity of the system. Therefore, to ensure system stability, robust controllers capable
of supporting dynamic wind energy frequencies must be implemented. By applying AI,
fuzzy logic (FL), fuzzy PI, artificial neuro-fuzzy inference system (ANFIS), fuzzy, fuzzy-PI,
and hybrid controller (ANFIS-PI), controllers are developed which have an advantage over
the classical proportional–integral controller as described in the work of Tuka et al. [57]
and Ishaque [58].

3.2.3. Effective Remote Monitoring and Management

AI allows operators to monitor the operations remotely, which is particularly useful
for offshore or remote sites. This capability reduces the need for a physical presence on site,
enables a faster response to problems that arise and reduces operating costs. AI systems
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continuously analyze data from various sensors installed on the wind turbines. These
sensors monitor parameters such as temperature, vibration and smoke levels and can
detect anomalies that could indicate a fire hazard. Conventional fire detection methods,
such as smoke and flame detectors, suffer from low detection accuracy and long response
times. Fire detection methods based on the use of AI are therefore being investigated.
These approaches often rely on neural networks for object recognition, which leads to
high false alarm rates for pseudo-fire images. Do et al. [59] proposed a hierarchical deep
neural network for fire detection that reduces the false alarm rate and accurately identifies
smoke and fire locations. The proposed solution first uses a neural network to classify
potential fire situations into three categories: fire, smoke or normal. By analyzing all image
information, false alarms are effectively reduced. The proposed approach can be applied to
wind turbine nacelles.

Research into the application of artificial intelligence in recognizing the conditions for
ice formation on wind turbine rotor blades is only just beginning, so a significant increase in
research can be expected. Ice formation on wind turbine blades is influenced by a number
of factors, including outside temperature, wind speed, humidity and so on. However,
lesser-known factors, such as the liquid water content and the mean volume diameter of the
water droplets, can also have an influence. Using sensors and/or computer vision, AI can
recognize the conditions for ice formation on turbine blades and activate de-icing systems
such as heaters or mechanical scrapers [60]. Chatterjee et al. [61] have shown that training
stand-alone deep learning (DL) models with augmented data capturing range-invariant
icing features can improve prediction performance for multiple wind farms.

3.2.4. An Effective System for Avoiding Bird Collisions with Wind Turbine Blades

Artificial intelligence plays a crucial role in the development of systems to avoid
collisions between birds and wind turbine blades, especially in a real-time context. These
systems use a variety of AI technologies to minimize the number of collisions between
birds and wind turbines and reduce the potential damage to the wind turbines.

AI systems use a variety of sensors, including cameras, radar and ultrasonic sensors,
to collect data about the wind turbine environment [62]. Systems such as the MERLIN
Detect radar and IdentiFlight camera system (DeTect Inc., Panama City, FL, USA) have
been developed to monitor bird activity in real time, providing early warning and enabling
automatic responses to prevent collisions [63,64]. By recognizing birds up to 1.3 km away
and classifying them as protected species, IdentiFlight provides wind turbine operators
with the critical visual and quantitative data they need to reduce or avoid collisions.

Using deep learning algorithms, such as convolutional neural networks (CNN) and
computer vision, the AI can identify birds in the vicinity of wind turbines. These algorithms
analyze images and videos to distinguish birds from other objects and can even identify
protected bird species. AI can also use predictive models to assess the behavior of birds
based on historical data about their migration patterns and weather conditions to predict
potential collisions and take appropriate system responses. When a potential collision is
detected, the system can activate collision avoidance mechanisms, such as changing the
rotation speed of the rotor blades or stopping the rotation of the rotor blades.

3.2.5. Integration with Smart Grids

Artificial intelligence plays a very important role in the integration of wind farms into
smart grids, where the stability and real-time control of the grid are key aspects [65]. The
application of artificial intelligence can enable the processing of a huge amount of data
from sensors and IoT devices in real time, allowing continuous monitoring of the grid
status and immediate adjustment to maintain stability. For example, artificial intelligence
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can recognize fluctuations in electricity supply and demand and adjust the output of wind
turbines accordingly [66].

AI can also predict potential instabilities in the grid before they occur. By analyzing
historical data and current grid conditions, AI models can predict situations that could lead
to instability, such as a sudden drop in wind speed or an unexpected increase in electricity
demand. This capability gives grid operators the ability to take preventative measures in
time to mitigate or avoid instability problems. Although traditional control systems can
also deal with the variability and fluctuations of wind energy, control systems based on
artificial intelligence can do so more efficiently, especially with a greater penetration of
wind farms in the power grid [67].

Another important opportunity presented by the use of AI is the rapid detection and
isolation of faults within the grid to prevent cascading failures that could lead to widespread
outages. For example, if AI predicts that a transformer is likely to fail, operators can request
maintenance before the failure occurs, preventing outages and reducing maintenance costs.

Another useful application of AI is optimizing the use of energy storage systems to
balance the grid. When wind power production is high, surplus energy can be stored in
energy storage systems (e.g., batteries, hydrogen or reversible hydropower plants) [68]. In
times when no wind energy is generated (too little or too strong wind), AI can activate the
use of stored energy from energy storage systems to maintain a stable power supply [66].

By providing insights and recommendations based on real-time data and predictive
analyses, AI helps operators make decisions to maintain grid stability [67].

However, it should be noted that the complexity of artificial intelligence algorithms
requires the creation of a clear legal framework to ensure that these technologies are used
fairly and transparently and that they are not abused.

Economically, AI improves operational efficiency and helps to reduce costs for energy
suppliers and consumers by optimizing energy generation, distribution and use [69], which
should lead to less price volatility and potentially lower electricity prices.

In terms of environmental impact, artificial intelligence contributes to achieving cli-
mate goals by improving the integration and utilization of renewable energy sources,
leading to a reduction in greenhouse gas emissions.

3.3. Wind Turbine Maintenance

One of the key areas in which artificial intelligence (AI) is expected to make the greatest
contribution in wind farms is predictive maintenance. Predictive maintenance uses AI
to analyze large amounts of sensor data and historical maintenance records to identify
patterns and predict potential turbine failures before they occur. This capability is critical
for several reasons, as follows:

• Minimizing downtime: By detecting problems early, predictive maintenance reduces
unplanned outages and ensures turbines operate at maximum efficiency and reliability.

• Cost savings: Early detection of failures enables timely repairs and prevents costly
damage to critical components. By accurately predicting maintenance needs, AI
can help avoid unnecessary maintenance activities and focus resources on critical
issues. This leads to significant cost savings and more efficient operations. The
National Renewable Energy Laboratory (NREL) states that operation and maintenance
(O&M) costs account for about one-third of the total lifecycle costs of wind farms.
In other words, they amount to USD 15–27/kW/year for onshore wind farms and
USD 40–60/kW/year for offshore wind farms [70]. The study by Abu-Rumman et al.
states that O&M costs account for about 19% of the total LCC for wind farms [71], and
Costa et al. [72] highlight that operation and maintenance costs generally constitute
approximately 20% to 25% of the total life cycle cost, both of which are values that
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are lower than those reported by NREL. Despite these differences, these sources
emphasize the importance of effective maintenance strategies to increase profitability.
Regular inspections and repairs help prevent major outages and costly repairs. Fewer
breakdowns mean fewer power outages, which leads to higher revenues.

• Improved safety: Automated condition monitoring of wind turbines reduces the need
for manual inspections at hazardous or remote sites, reducing the risk of industrial
accidents while maintaining operational efficiency.

• Extended turbine lifetime: Ultimately, regular maintenance extends the lifetime of
wind turbines, meaning the wind turbine produces more clean energy, which in
turn contributes to lower greenhouse gas emissions and a positive impact on the
environment. According to some analyses, AI can extend the service life of wind
turbines by up to 10% [47].

Awareness of the importance of wind turbine maintenance has led to an 87% increase
in the number of scientific papers on this topic between 2007 and 2019. As a result of
increased research, the LCOE of onshore wind projects has fallen by 45%, while it has fallen
by 28% for offshore projects [70]. The application of artificial intelligence (AI) in wind
turbine maintenance has evolved over the past decades, with significant progress being
made in recent years. Although the first mention of AI in wind turbine maintenance is
not clearly documented, a literature review shows that AI applications in wind turbine
technology have been used on a larger scale since around 1980 [10]. The emergence of the
concept of predictive maintenance has significantly accelerated the application of AI to
analyze wind turbine data to predict failures before they occur. In the last decade, most
existing studies have utilized signal processing or physics-based numerical models for
CBM in the context of turbine condition monitoring, using vibration data in particular for
this purpose [15,73,74]. Chatterjee and Dethlefs [15] are of the opinion that, despite the
increasing use of AI in the wind industry, more traditional techniques, such as those based
on signal processing, will continue to complement AI models in this rapid transition. They
also emphasize the need to ensure the quality of data and focus on more sophisticated and
customized AI algorithms, especially using deep learning and natural language generation
techniques for explainable AI.

Regarding the scope of application of AI in wind turbine maintenance management,
according to García Márquez and Peinad Gonzalez [23], 25% of applications focus on
optimization of any kind (cost, maintenance, route planning, etc.), 16% of applications
are related to fault detection and the same number to decision making. Planning and
scheduling waste is the focus of 9% of applications, condition monitoring 8%, maintenance
8%, etc.

The most widely utilized AI techniques for wind turbine maintenance include artificial
neural networks (ANNs), genetic algorithms (GAs), particle swarm optimization (PSO),
fuzzy logic, statistical methods, and decision-making techniques. Among these, ANN
and its variants stand out as the most versatile, as they are applicable to monitoring,
optimization, data prediction, and decision-making tasks. GA and PSO are primarily
employed for optimization and decision-making, as these algorithms were specifically
designed to optimize systems with multiple variables. Fuzzy logic is predominantly used
for decision-making and risk mitigation, incorporating factors such as cost and component
reliability. Statistical methods are mainly applied for maintenance and fault prediction,
leveraging large datasets to generate accurate estimates.

The detection of faults in the pitch system of wind turbines plays a crucial role in
the efficient and reliable operation of wind turbines. Therefore, Filipe de Lima Munguba
et al. [75] tested sixteen artificial intelligence (AI) classification models for detecting faults
in the pitch system of wind turbines. The random forest classifier (RF) and extra trees
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classifier (ET) models showed the best performance, while the models with the lowest
performance were the K-nearest neighbor classifier (KNN) and linear discriminant analysis
(LDA). The average hit effectiveness for the modes “healthy” and “faulty” was about 80%
for most of the developed models.

The rotor blades of wind turbines are the most important component of wind turbines
that enable the utilization of wind energy. Damage or breakage to the blades has a direct
impact on the operation of wind farms. It is therefore extremely important to monitor
changes in the blade surface over time. Advances in drone technology and artificial
intelligence (AI) make it possible to capture and analyze numerous high-resolution images
of rotor blades. However, images of wind turbine blades taken while the rotors were
spinning resulted in a complex background in the blade images, with the surface features
of the blades being relatively small. In their work, Sheiati et al. [76] applied a deep learning
segmentation method to segment rotor blade images captured by drones and eliminate the
influence of the image background. A Siamese convolutional neural network (S-CNN) was
used to recognize individual blades captured by drones and compare them with a reference
blade image.

Abarca-Albores et al. [77] assessed two models for detecting faults in wind turbine
blades. The first employed logistic regression, which proved superior to Naive Bayes,
decision trees, and neural networks, showcasing its efficacy in identifying fault-related
patterns. The second utilized clustering techniques and achieved higher accuracy and
improved data segmentation performance.

Lin et al. [78] used data on the predictive maintenance of wind turbines in Taiwan. On
this basis, they developed a program for predicting wind turbine failures using a hybrid
method that employs machine learning and deep learning. The random forest method is
applied to identify features that are highly correlated with failures and to eliminate features
with low correlation to maximize the performance of the model. The resulting failure
prediction model provides an average prediction accuracy, precision and recall of 99%, 70%
and 77%, respectively, for predictions from one to six hours ahead.

Udo et al. [79] developed a method for monitoring and detecting anomalies in critical
components of a wind turbine, such as the gearbox and the generator. The approach is
based on historical SCADA data. In the paper, models using extreme gradient boosting
(XGBoost) and long short-term memory (LSTM) are proposed to predict the behavior of the
characteristics of critical components of a wind turbine, and statistical process control (SPC)
is used to evaluate their abnormal behavior. The proposed method is tested in practice. The
approach is promising but requires an investigation of the sensitivity level of the deviation
to perform a fault diagnosis by deducing which specific parts (subcomponents) of the main
components will fail.

In [80], the generator temperature and gearbox oil temperature in SCADA data were
used to model the normal temperature of wind turbine components. The residual between
the predicted and actual values was calculated and the trend was monitored using an
exponentially weighted moving average (EWMA) control chart.

Canizo et al. [81] presented the development of predictive maintenance solutions in a
big data environment. The proposed approach aims to develop a predictive model genera-
tor for each monitored wind turbine that provides a dashboard with failure predictions
every 10 min. The task of the maintenance manager is to understand the development of
anomalies and make appropriate decisions.

Using machine learning techniques, artificial intelligence can analyze data from turbine
sensors to identify patterns that indicate potential failures before they occur. However,
unattended components or subsystems can occasionally lead to failures. Therefore, in their
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research, Lützen and Beji [82] analyzed and demonstrated the possibility of the practical
application of artificial intelligence to predict failures in unattended components.

A proactive maintenance approach helps to reduce unplanned downtime and extend
the lifetime of turbines by enabling timely interventions. Predictive maintenance not only
increases operational safety, but also contributes to cost savings by minimizing repair costs
and optimizing maintenance schedules [83].

3.4. The Impact of Extreme Weather Conditions on AI Performance

In extreme weather conditions, such as lower temperatures and higher wind speeds,
AI technology in wind turbines faces several external challenges that affect its effectiveness.
Extreme cold can affect the accuracy of sensors installed in wind turbines that monitor
parameters such as vibration, temperature and blade rotation. Ice formation on sensors or
mechanical components can lead to distorted data, reducing the reliability of AI-driven
predictive maintenance and real-time adjustments [84]. For example, AI algorithms rely on
precise vibration data to detect mechanical wear. However, ice formation can obscure or
distort these signals, resulting in delayed maintenance alerts. AI-enabled drones used for
automated inspections can struggle in harsh weather (e.g., ice) and delay fault detection.

Higher wind speeds increase the mechanical stress on turbine components (e.g., blades,
gears). While AI dynamically optimizes the pitch and yaw angles of the rotor blades to
maximize energy yield, extreme gusts or turbulence can stress turbines beyond their
operating limits and cause structural damage. AI models must account for rapid wind
changes and adapt control strategies to balance energy production and turbine safety. AI
models trained with “normal” weather data may perform worse under extreme conditions.
Deep learning architecture such as LSTM need to be trained with datasets containing
extreme weather scenarios to improve resilience.

3.5. End of Life of a Wind Farm

Artificial intelligence can play a significant role in the end-of-life phase of wind
turbines. Here are some important areas where AI can contribute [85]:

• Decommissioning planning: AI can analyze data to optimize the decommissioning
process, ensuring that it is carried out efficiently and cost-effectively.

• Recycling and material recovery: AI can help identify and sort materials from tur-
bines that are no longer in use, improving the efficiency of the recycling process and
maximizing material recovery.

• Life extension analysis: AI can assess the condition of aging turbines and predict their
remaining life, helping to make decisions about whether to refurbish, repower, or
decommission them.

• Environmental impact assessment: AI can model and predict the environmental
impact of decommissioning activities, helping to minimize negative impacts on the
surrounding ecosystem.

• Resource allocation: AI can optimize the allocation of resources during the decommis-
sioning process, ensuring that labor, equipment, and materials are used efficiently.

• Risk mitigation: Artificial intelligence tools can help identify potential risks associated
with decommissioning, such as weather delays or logistical challenges. By quantifying
these risks, operators can develop strategies to effectively mitigate them.

By using AI in these end-of-life areas, wind turbines can be managed in a more
sustainable and efficient manner, reducing costs and environmental impact.
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4. Artificial Intelligence Algorithms
As can be seen from the previous chapters, different algorithms of artificial intelligence

are extensively applied to the problem of wind turbines. Below are more important
observations related to applied AI methods and algorithms.

This chapter summarizes and expands on all of the key references to artificial in-
telligence (AI) and machine learning (ML) algorithms found in the paper, focusing on
algorithms that have been shown to perform well in wind farm design optimization, opera-
tional decision making, maintenance management and end-of-life processes. The relevant
results are categorized under supervised/unsupervised/semi-supervised learning, func-
tionality (e.g., classification or regression), probabilistic vs. non-probabilistic, model type
(e.g., neural networks, ensemble methods) and data representation.

Below is a detailed summary, starting with an overview of the AI/ML approaches men-
tioned in the paper and ending with a summarizing classification table. The citations refer
either to the original references within the article or to additional sources where indicated.

4.1. Algorithms for Wind Turbine Design

Evolutionary algorithms (genetic algorithms and particle swarm optimization) are
often used to iteratively improve wind turbine components such as blade aerodynamics,
tower dimensions and foundations [22,23,31–34]. Representative examples are the use of
genetic algorithms to refine the aerodynamic profile and particle swarm optimization for
structural designs that balance mass and deflection.

Neural networks (fully connected networks and convolutional networks) are used
to predict aerodynamic performance metrics (lift, drag, turbulence) and to optimize ge-
ometry by rapidly evaluating design candidates [25,28,32,33,35]. Convolutional neural
networks can map the shape of airfoils to aerodynamic coefficients, while feedforward
neural networks help to predict the results of foundation designs without expensive finite
element analyses.

Support vector machines, relevance vector machines and genetic programming have
also been explored for the control of blade design processes, especially for the determination
of optimal tip speed ratios (TSR) [31].

4.2. Algorithms for Wind Turbine Operation

Time series forecasting models (LSTM, GRU, CNN-LSTM and CNN-RNN) are crucial
for short-term forecasting of wind energy, typically minutes to hours in advance, as they
capture temporal dependencies in wind speed and power data [38,49,50,52,55]. LSTM
networks can reduce the mean absolute percentage error, and hybrid CNN-GRU or CNN-
LSTM architectures often improve accuracy for high-frequency wind data.

Ensemble methods such as random forest, XGBoost and LightGBM combine pre-
dictions from multiple sub models to increase accuracy in power generation forecast-
ing [49,50,54,79]. XGBoost is often used for predicting the electrical output of wind turbines
and for temperature modelling, while random forest helps to identify features that are
strongly correlated with system failures or power fluctuations.

Adaptive neuro-fuzzy inference systems (ANFIS) and fuzzy logic approaches enable
the control of wind turbines (e.g., dynamic pitch or yaw adjustments), stabilize voltages
in doubly fed induction generators and improve consumption prediction under uncer-
tainty [50,56,58].

Computer vision and object recognition techniques based on deep learning enable real-
time monitoring of birds and bats, collision avoidance and leaf icing detection [44,59–62].
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4.3. Algorithms for Wind Turbine Maintenance

Machine learning classifiers (random forest, extra trees, logistic regression, K-nearest
neighbor, naive Bayes) facilitate error detection and classification of sensor data such as
vibration signals and the state of the pitch system [24,75,77]. Random forest and extra
trees, for example, have shown a detection accuracy of around 80% for faults in the blade
system, and logistic regression in combination with clustering can detect damage to the
rotor blades.

Deep learning for image segmentation (using CNN and Siamese CNN architectures)
is used for drone-based inspection of rotor blades, with segmented images highlighting
cracks or surface defects [76].

Hybrid predictive models combining ML and DL focus on predictive maintenance
using SCADA data to predict failures hours in advance [78–80]. For example, LSTM or
XGBoost models can be integrated into statistical process control to detect anomalies in the
temperatures of gearboxes or generators. Big data frameworks also support the continuous
10 min detection of anomalies in large turbine fleets [81].

4.4. Algorithms for End-of-Life Decision-Making

Predictive analytics and decision trees help to plan the decommissioning of turbines
and decide whether they should be overhauled or recycled. These methods often classify
turbines into categories for repowering or decommissioning by combining factors such as
cost, structural integrity and location.

Clustering and optimal resource allocation techniques are then used to sort materials
for recycling and optimize the logistics of dismantling multiple turbines at a site.

4.5. Summary Categorization Table

Table 1 contains a consolidated categorization of the algorithms discussed in the
context of wind farm design, operation, maintenance and end of life. The categories are
adapted to common distinctions in ML (e.g., learning approach, functionality, probabilis-
tic vs. non-probabilistic), and the references refer to the relevant studies mentioned in
the paper.

Table 1. Summary consolidated categorization of AI algorithms mentioned in paper.

Algorithm Learning
Approach Functionality

Probabilistic vs.
Non-
Probabilistic

Model Type Data Repre-
sentation

Key Wind
Power
Application

References

Genetic
algorithms
(GAs)

Evolutionary/
heuristic

Optimization
(design)

Non-
probabilistic

Evolutionary
model

Structured and
engineering
data

Blade shape,
tower
foundation
optimization

[22,23,31,34]

Particle swarm
optimization
(PSO)

Evolutionary/
heuristic

Optimization
(design)

Non-
probabilistic

Evolutionary
model

Structured and
engineering
data

Tower design
and
multi-objective
cost-
performance

[32–34]

Support vector
machine
(SVM)

Supervised Regression/
classification

Non-
probabilistic

Instance-
based/kernel
methods

Structured
(SCADA,
simulations)

Blade design
parameters
prediction
(TSR)

[31]

Convolutional
neural
network
(CNN)

Supervised Classification/
segmentation

Non-
probabilistic

Deep neural
networks

Image (blade
inspection),
structured data

Blade defect
detection,
tower design
optimization

[32,76]
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Table 1. Cont.

Algorithm Learning
Approach Functionality

Probabilistic vs.
Non-
Probabilistic

Model Type Data Repre-
sentation

Key Wind
Power
Application

References

Feedforward
neural
network
(FFNN)

Supervised Regression/
forecasting

Non-
probabilistic

Neural
network

Structured
(wind speed,
SCADA)

Performance
predictions
(foundations,
loads)

[35]

Long
short-term
memory
(LSTM)

Supervised
Sequence
modeling/
forecasting

Non-
probabilistic

Recurrent
neural network

Time-series
SCADA/weather

Short-term
power
prediction,
anomaly
detection

[38,49,50,52–
55,79]

Gated
recurrent unit
(GRU)

Supervised
Sequence
modeling/
forecasting

Non-
probabilistic

Recurrent
neural network

Time-series
SCADA/weather

Wind
speed/power
forecasting

[38,49]

Extreme
gradient boost
(XGBoost)

Supervised Regression/
classification

Non-
probabilistic

Ensemble
model

Structured
(SCADA,
weather)

Anomaly
detection,
power
forecasting

[49,54,79]

Random forest
(RF) Supervised Regression/

classification
Non-
probabilistic

Ensemble
model

Structured
(SCADA,
sensor data)

Fault diagnosis
(pitch,
gearbox),
feature
selection

[32,75,78,79]

Naive Bayes Supervised Classification Probabilistic Statistical
model

Structured
(sensor data)

Blade fault
detection
(logistic
regression
comparisons)

[77]

Adaptive
neuro-fuzzy
inference

Supervised Control/
forecasting

Non-
probabilistic

Hybrid (fuzzy
+ neural net)

Structured,
time-series

MPPT control,
voltage
stabilization

[50,56–58]

Decision trees Supervised Classification/
decision rules

Non-
probabilistic

Tree-based
model

Structured
(financial,
sensor data)

End-of-life
refurbishment
vs. decommis-
sioning

[85]

Clustering
(K-means, etc.) Unsupervised

Anomaly
detection/
grouping

Non-
probabilistic Instance-based Structured

(sensor data)

Blade damage
grouping, EoL
resource
allocation

[77,85]

5. Assessment of the Computational Demands and Costs of Applying
Artificial Intelligence in Wind Farms
5.1. Computational Demands

The computational demands of AI in large wind farms can be large in some situations.
AI-driven wind farms rely on continuous data streams from thousands of sensors monitor-
ing turbine performance, weather conditions, and grid interactions. Predictive maintenance
algorithms, for instance, analyze vibration, temperature, and power output data to pre-
vent component failures. These are large data sets used to train such models, and the
simplest sets with a resolution of 10 min are hundreds of megabytes in size on an annual ba-
sis [47,86]. The National Renewable Energy Laboratory (NREL) developed the Wind Plant
Graph Neural Network (WPGNN), a surrogate model trained on 250,000 simulated wind
plant layouts, to optimize design and turbine placement [87]. Such large-scale simulations
demand high-performance computing (HPC) clusters capable of parallel processing [87,88].
Real-time analytics further strain computational resources. For example, GE’s AI/ML
logistics optimization tool employs digital twins to simulate turbine installation scenarios,
necessitating edge computing infrastructure to minimize logistic costs in remote offshore
environments [89]. The shift toward decentralized computing—where data preprocessing
occurs at turbine-level edge devices—reduces cloud dependency but requires robust on-
board processing units [90]. Machine learning models for wind forecasting and turbine
control require large datasets for training. DNV’s CFD.ML, a machine learning surrogate for
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computational fluid dynamics (CFD), uses graph neural networks to emulate high-fidelity
wind flows. The speedup is significant: CFD.ML can produce results 2 million times faster
than the CFD model it is trained on with only 2% of the computing resources [91]. The
WPGNN’s training on FLORIS-generated data highlights the dependency on physics-based
simulations to ensure accuracy, further escalating computational costs but also increasing
revenue [3]. Moreover, generative AI applications in site selection and turbine design, such
as 4D digital twins, require iterative simulations of environmental impacts and energy
yield. These processes are often run on supercomputers due to processor requirements [90].
To summarize, in some situations the energy footprint of AI infrastructure poses a critical
challenge. Training a single large neural network can emit over 284 tons of CO2, equivalent
to five gasoline-powered cars driven for a year [92]. While wind farms inherently support
renewable energy, powering onsite data centers and edge devices adds to operational costs.
Nevertheless, the authors emphasize that edge computing brings a number of advantages,
from lower consumption to faster reaction to problems with wind power plants [93].

5.2. Cost Implication

Adopting AI technologies in wind power systems entails both upfront investments
and substantial long-term savings. On the input-cost side, expenses arise from deploying
additional sensors (e.g., vibration, temperature, and acoustic sensors) on wind turbines,
purchasing or developing AI software platforms, and training personnel in data science
and turbine-specific analytics [70]. In particular, hardware costs vary by turbine size
and condition, while software licensing or in-house development incurs ongoing fees for
updates and support [22]. Moreover, incorporating advanced control systems or drone-
based inspection tools adds to capital expenditures, which can be significant for large-scale
wind farms [72].

Despite these initial outlays, AI can lower overall operating costs by predicting failures
earlier, thus preventing expensive breakdowns and minimizing unplanned downtime [71].
Proactive, data-driven maintenance strategies have been shown to cut operation and
maintenance (O&M) expenses, which, for onshore farms, can constitute up to one-third
of total life-cycle costs [70]. Additionally, AI-driven design optimizations—such as rotor
blade geometries adapted for local wind conditions—can yield higher turbine efficiency,
translating into faster return on investment and improved long-term profitability [21,22].
AI can further extend turbine lifespans by better regulating stress on critical components
(e.g., gearboxes, blades), which reduces component fatigue and spreads capital costs over a
longer productive period [47]. Taken together, these reductions in maintenance outlays,
enhanced energy production, and asset-life extensions typically outweigh the initial AI-
related expenditures, making the technology a strategic investment for modern wind
energy operators.

Layout optimization studies illustrate that wind farms can reduce overall costs by
improving power generation capacity. In one project, applying particle swarm optimization
(PSO) and the Mossetti cost function yielded a 10.75% boost in output and 9.42% lower
costs [94]. Similarly, advanced wake control methods in offshore installations have shown
a 33% power increase, which further drives down the levelized cost of energy [24]. These
gains are achieved by harmonizing operational variables (e.g., thrust coefficients, yaw
angles) and ensuring that cost-driving factors—like turbine spacing and control-actuation
demands—are carefully managed.

In tandem, design optimizations for blades, rotors, and support structures bring
marked economic benefits. Lighter blade architectures—realized through topology op-
timization (TO) and genetic algorithms (GA)—reduce material and transportation costs.
Direct-drive machines can see mass reductions of 54–67% and power density improvements
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of 13–25%, curbing generator-related capital expenses [94]. Onshore foundations likewise
benefit from metamodel-based design approaches, significantly cutting engineering time,
while offshore monopiles and semi-submersible platforms save 10–25% in steel tonnage [94].
All these measures cumulatively lower both upfront investment and long-term operational
expenditures, thereby enhancing wind projects’ financial viability.

6. Dangers of Using Artificial Intelligence (AI) in Wind Turbines
The biggest risk in applying artificial intelligence (AI) to wind turbines can be seen

as bias and discrimination in algorithms, which can lead to unpredictable and potentially
harmful consequences. Other risks include cyberattacks, ethical issues, the complexity of
the system and the question of liability in the event of accidents. Although the application
of artificial intelligence is not considered a risk, it should be noted that it not only leads to
higher electricity production, but also consumes a lot of electricity during its operation.

• Algorithmic bias and hallucinations: AI systems lack contextual understanding and
can produce “hallucinations”—inaccurate or fabricated results. For example, in wind
turbines, this can manifest itself through faulty maintenance schedules based on biased
models. Fault detection models can focus on common minor problems (e.g., cracks on
the blade surface) while missing rare but critical failures such as gearbox bearing wear.
A study using matching contrastive learning (MCL) found that traditional methods
struggle with unbalanced SCADA data, requiring specialized techniques to improve
minority class fault detection [85]. A study on brake wear prediction in a slewing
system using LSTM and SVM showed that models without contextual knowledge of
the mechanical interactions between brake pads and rotors generated false alarms,
underestimating actual gearbox problems [82].

• Data dependency: AI systems depend on large amounts of data for learning and deci-
sion making. Inconsistent or non-standardized data from turbines (e.g., different OEM
status codes, sensor errors) can lead to inaccurate predictions. For example, mislabeled
SCADA data can cause AI to misinterpret turbine health, delaying maintenance or
causing unnecessary repairs [83]. Synthetic data generation, which is used to compen-
sate for limited real-world data, risks increasing bias if the synthetic samples do not
represent the actual operating conditions of the turbine [95]. Incorrect conclusions
can also be drawn if tests are performed in laboratory conditions that differ from
actual field conditions. For example, a convolutional LSTM model for diagnosing
bearing failure achieved 99.5% accuracy in laboratory tests, but in field conditions due
to environmental noise misclassified normal vibrations as failures [85].

• Data imbalance and data quality problems: Artificial intelligence (AI) methods for
wind energy applications often struggle with data imbalances and quality issues,
especially when analyzing large supervisory control and data acquisition (SCADA)
datasets that contain significantly more “healthy” turbine measurements than true
fault indicators. This discrepancy causes conventional machine learning approaches
to under-detect the rare fault conditions while disproportionately focusing on the
majority (normal) class [85]. To make matters worse, inconsistent labeling practices
among different turbine manufacturers and irregularities in sensor reporting further
complicate data quality [23]. Various solutions have been developed to mitigate
these problems. Data augmentation strategies, including the synthetic minority over-
sampling technique (SMOTE) and other generative methods, artificially enrich the
minority class (fault) and thus improve the classifier’s ability to detect infrequently
occurring but critical fault types [85]. Robust outlier detection and noise reduction
techniques can further improve data integrity. Sensor readings that deviate from
plausible physical ranges are discarded or reconciled using expert knowledge, and
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labeling inconsistencies are resolved when data from different turbine models are
integrated [23]. Incorporating physical or technical knowledge into feature engineering
helps to isolate meaningful patterns in large amounts of predominantly normal data.
For example, converting raw sensor measurements into torque signatures or vibration
envelopes increases the signal-to-noise ratio and reduces the detrimental effects of class
imbalance. Advanced learning architectures such as matching contrastive learning
(MCL) and hybrid neural network/fuzzy logic designs are promising when adapted
to wind turbine data with sparse fault events [85]. Ensemble methods (e.g. XGBoost,
random forest) can also be configured with class weighting or cost-sensitive loss
functions to correct biases in favor of majority classes. As the operating conditions
in wind farms change over time, continuous retraining based on newly acquired,
high-quality data is still essential. Complemented by active learning, where the model
queries human expertise to flag uncertain cases, this retraining process helps to ensure
the long-term robustness of predictions and close emerging gaps in data quality [23].
By integrating these approaches, AI-based systems can detect faults more accurately
and optimize turbine performance, ultimately leading to more reliable fault prediction
and timely maintenance actions.

• Cyberattacks: AI systems can be targeted by cyberattacks, which can lead to wind
turbine outages or even physical damage. Attackers can exploit vulnerabilities in AI
systems to take control of wind turbines. For example, manipulated sensor data could
trick AI into ignoring blade cracks or bearing failures, risking catastrophic failures [13].
This is why cyber-protection systems are needed. An example of a cyber-secure
wind turbine control system involves the integration of a support vector machine
algorithm with an H∞ controller to identify communication attacks, combined with a
machine learning algorithm to address errors resulting from communication or data
injection attacks.

• Ethical issues: The application of AI can raise ethical issues, such as data privacy and
accountability for decisions made by AI. It is important to ensure that AI systems are
used in a way that is ethically acceptable and transparent. The use of AI in decision-
making can lead to ethical dilemmas, especially when it comes to decisions that affect
human lives or the environment. A lack of transparency in how AI makes decisions
can lead to distrust among users and the public.

• System complexity: AI systems can be very complex, which can make them difficult
to understand and manage. This can lead to problems in maintaining and optimizing
the system.

• The issue of liability for accidents: In the event of accidents or malfunctions caused
by decisions made by AI, it is difficult to determine who is responsible—whether
it is the manufacturer, the developer or the user of the system. This ambiguity can
lead to a lack of accountability and reduce motivation to develop safer and more
efficient systems

7. Discussion
A critical observation from the literature and the data reviewed is that AI is increas-

ingly being used to optimize the design of wind turbines, with particular attention being
paid to rotor blades, tower structures and foundations. The aerodynamic shape of rotor
blades has been consistently identified as critical to wind turbine performance, as opti-
mized blade geometry can lead to significant improvements in energy harvesting and
efficiency. It was found that, by applying computational fluid dynamics (CFD) simula-
tions in conjunction with AI-driven design iterations, annual energy production can be
increased by 6% to 15% compared with conventional approaches. Despite the differences in
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reported performance gains, several studies consistently indicate that neural networks and
evolutionary algorithms, such as genetic algorithms (GA) and particle swarm optimization
(PSO), have been shown to be effective in optimizing multivariable design objectives. These
objectives include maximizing aerodynamic efficiency, minimizing structural mass and
ensuring robust mechanical integrity.

The importance of local wind conditions has also taken center stage. AI-based models
can integrate site-specific meteorological, topographical and environmental data to adapt
the turbine design to local wind conditions. Such an approach departs from the tradi-
tional ‘one size fits all’ design philosophy and instead utilizes advanced machine learning
techniques—namely convolutional neural networks (CNNs), support vector machines
(SVMs) and hybrid algorithms—to identify the wind speed distributions, turbulence inten-
sities and wind directions characteristic of each site. This capability has further underlined
the usefulness of AI in site selection and land use optimization based on geographic infor-
mation systems (GIS). Here, multi-criteria decision analysis can be coupled with machine
learning to identify the most suitable areas for the installation of wind farms.

In the operational phase, one of the biggest challenges is the volatile nature of wind
energy, which makes it difficult to stabilize the electricity grids. AI-based forecasting has
already been widely used to predict energy generation several hours or days in advance.
Models based on deep neural networks, including long short-term memory (LSTM) and
gated recurrent units (GRUs), have been shown to reduce prediction error more effectively
than classical statistical or purely meteorological methods. The ability of these AI models
to process large, high-frequency data sets emphasizes their utility for short-term operations
and real-time management.

However, it has been shown that predictive modelling is only one aspect of improving
operations. Equally important is the dynamic control of turbine parameters. Sophisticated
AI algorithms ensure that wind turbines can respond adaptively to rapidly changing
environmental conditions through real-time adjustments to blade pitch, nacelle yaw angle
and rotation speed. This approach not only improves the annual energy yield, but also
reduces mechanical stress on key components, thereby extending the turbine’s service life.
In fact, fuzzy logic, neuro-fuzzy controllers and hybrid control strategies (e.g., ANFIS-PI)
have been used to provide robust responses for doubly fed induction generators. This
shows that AI is capable of increasing energy yield while maintaining grid stability.

Maintenance has proven to be one of the most fruitful areas for the use of AI, especially
in the context of predictive and condition-based maintenance. As maintenance costs can
account for a significant portion of a wind farm’s total lifecycle costs, early detection of faults
in the gearbox, generator and pitch system can prevent catastrophic component failures and
reduce downtime. Several studies have reported that advanced classifiers—random forest
(RF), extreme gradient boosting (XGBoost) or extra trees—can detect and classify faults
with high accuracy, with detection rates sometimes exceeding 80% for certain fault modes.
These results confirm that data-driven AI models trained on supervisory control and
data acquisition (SCADA) streams can detect subtle anomalies in temperature, vibration
and torque signals that may not be detectable using traditional threshold-based methods.
In addition, drone-based inspections using image segmentation and deep learning have
shown promise in assessing the integrity of the rotor blade surface, reducing the need for
labor-intensive manual inspections in difficult or remote environments.

A final but increasingly relevant aspect is the end-of-life phase of wind turbines. AI-
driven methods are known for their potential to optimize decommissioning plans and
material recycling processes. These include analytical models that estimate the remaining
lifetime of turbines based on operational data, as well as solutions that help dismantle and
maximize material recovery from blades, towers and generators. Although such end-of-life
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applications are not yet widespread, they are likely to become increasingly important as
more and more first-generation wind turbines are retired.

Despite impressive progress, algorithmic improvements are still essential. Challenges
include ensuring data quality, especially for offshore wind turbines where the error rate of
sensors is higher, as well as managing heterogeneous data collected by different turbine
manufacturers. In addition, the interpretability of black box models is questioned, especially
for critical decisions on grid stability or large-scale offshore developments. Cybersecurity
risks are also high, as the use of AI and connectivity with the Internet of Things (IoT)
can expose wind farms to targeted attacks if robust encryption and intrusion detection
protocols are not used.

Future advances are expected in hybrid AI, where physics-based modelling is inte-
grated with advanced machine learning to improved generalizability under rare or extreme
weather conditions. The increasing use of explainable AI (XAI) methods is expected to
improve transparency and compliance, thereby increasing acceptance by grid operators
and environmental stakeholders. Multi-agent systems developed for large offshore clus-
ters can further improve synergy between neighboring turbines, optimizing wake control
and joint resource management. These ongoing developments will improve operational
efficiency, extend system lifetime and improve the economic viability of wind power
projects worldwide.

Algorithmic biases, data integrity issues, cybersecurity vulnerabilities and the com-
plexity of AI models when integrated into the real world were each cited as potential
obstacles. In addition, ethical considerations related to accountability and transparency in
algorithmic decision-making remain unresolved. As wind turbine control systems become
increasingly autonomous, safety and liability considerations will require additional clarity
in the legal framework. Finally, it was emphasized that AI solutions themselves consume
significant computing resources, resulting in an additional energy burden and necessitating
careful lifecycle analysis of these digital technologies.

8. Conclusions
The work has confirmed that artificial intelligence offers new opportunities across the

entire lifecycle of wind turbines, from initial planning through operation and maintenance
to final decommissioning. By synthesizing data from meteorological records, advanced
sensor streams and operational contexts, AI can generate actionable insights that lead to
cost efficiencies, improved turbine performance and reduced environmental impact.

Firstly, in the field of design, AI has enabled significant advances in the optimization
of rotor blades, tower statics and material-saving foundations. Iterative generative design
processes utilize neural networks and evolutionary algorithms to rapidly converge on
geometries that improve energy yield while meeting mechanical requirements. The ability
to account for local wind conditions while meeting multiple targets such as aerodynamic
performance, cost, noise and environmental factors demonstrates the multiple benefits of
machine learning and deep learning modelling.

Secondly, in the operational phase, AI-based demand and supply forecasts have
proven to be crucial for grid stability. Real-time optimization of rotor speed, blade pitch
and yaw angle has also helped to reduce stress on structural components, extending turbine
life. The integration of AI into smart grids, including the coordination of energy storage
systems, enables a better balance between power generation and consumption, improving
power quality and reducing the carbon footprint of electricity.

Thirdly, maintenance practices have benefited significantly from AI-based predictive
analytics. The ability to pre-emptively detect anomalies in gearboxes, generators or rotor
blades ensures a more stable power supply while reducing the risk of extended downtime
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and major repairs. As several studies have shown, the transition from reactive or scheduled
maintenance to data-driven predictive maintenance has led to measurable cost savings and
optimized maintenance planning. Drone-based inspections combined with computer vision
techniques have further reduced the risks associated with manual inspections, especially in
offshore or high-altitude scenarios.

Finally, end-of-life artificial intelligence applications, although not yet as mature,
promise efficient decommissioning of turbines, strategic recycling of valuable materials
and environmentally sound repowering or modernization. It can be assumed that these
methods will become increasingly popular as a larger number of wind farms approach the
end of their service life.

It can therefore be concluded that AI will play a central role in ensuring that wind
energy systems remain competitive, reliable and environmentally friendly. Future research
directions could include developing more transparent and explainable AI models that
promote trust between engineers, regulators and the public. Exploring how AI-driven
optimization solutions can be reconciled with emerging grid architectures—such as micro-
grids and transactive energy markets—is also an interesting area. In addition, thorough
assessments of the carbon footprint associated with the development and computation of
AI should be undertaken to ensure that the net environmental benefits remain positive.

In summary, the results show that AI not only expands the technical capabilities of
wind turbines, but also opens up new avenues for cost reduction, improved reliability and
environmental protection. Nevertheless, rigorous testing, robust cybersecurity measures
and clear regulatory guidelines are essential to minimize risks and maintain public trust. If
these challenges are addressed strategically, AI-based solutions can help the global energy
sector meet climate targets, improve grid resilience and promote a more sustainable future.
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Abbreviations
The following abbreviations are used in this manuscript:

HP Analytic hierarchy process
AI Three letter acronym
ANFIS Artificial neuro-fuzzy inference system
BPNN Back propagation neural network
CFD Computational fluid dynamics
DL Deep learning
EL Ensemble learning
ET Extra trees
EWMA Exponentially weighted moving average
FCM Fuzzy C-means
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GA Genetic algorithm
GIS Geographic information system
GP Grid-partitioning
GRU Gated recurrent unit
INN invertible neural network
IoT Internet of things
IRENA International Renewable Energy Agency
KNN K-Nearest neighbors
LCC Life cycle cost
LightGBM Light gradient boosting machine
LSTM Long short-term memory
MAPE Mean absolute percentage error
MCDA Multi-criteria decision analysis
ML Machine learning
MLC Matching contrastive learning
MPPT Maximum power point tracking
NREL National Renewable Energy Laboratory
O&M Operation and maintenance
OEM Original equipment manufacturer
PBL Project-based learning
PSO Particle swarm optimization
PV Photovoltaic
RCMRD Regional Centre for Mapping of Resources for Development
RF Random forest
RNN Recurrent neural network
RSME Root mean square error
RVM Relevance vector machine
SC Subtractive clustering
SCADA Supervisory control and data acquisition
SPC Statistical process control
SVM Support vector machine
TSR Tip speed ratio
WWEA World Wind Energy Association
XGBoost Extreme gradient boosting
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